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Abstract

Traditional approaches to information sharing use
a highly conservative approach to deduce the meta-
data for an output object x derived from input ob-
jects y1, y2, · · · , yn (e.g.: maximum over the se-
curity labels of all input objects). Such approaches
does not account for functions that explicitly down-
grade the value of an object. Consequently, the se-
curity labels in traditional approaches tend to mono-
tonically increase as newer objects are derived from
existing ones. In this paper we present a novel meta-
data calculus for securing information flows. The
metadata calculus defines a metadata vector space
that supports a time varying value function that
is computed as a function of the object’s metadata
and operators + and · to compute the metadata
of an output object that is derived by downgrad-
ing, transforming or fusing other objects. We also
describe a concrete realization of our metadata cal-
culus wherein the tightness of our value estimates
competes in an optimization problem. We present
several tradeoffs with space and accuracy and ex-
plore a spectrum of solutions ranging from conser-
vative to risk-based value estimates.

1 Introduction

Large corporations are slowly being transformed from
monolithic, vertically integrated entities, into glob-
ally disaggregated value networks, where each mem-
ber focuses on its core competencies and relies on
partners and suppliers to develop and deliver goods
and services. The ability of multiple partners to
come together, share sensitive business information
and coordinate activities to rapidly respond to busi-
ness opportunities, is becoming a key driver for suc-
cess.

The defense sector too, has similar, dynamic in-
formation sharing needs. Traditional wars between

armies of nation-states are being replaced by highly
dynamic missions where teams of soldiers, strate-
gists, logisticians, and support staff, drawn from
a coalition of military organizations as well as lo-
cal (military and civilian) authorities, fight against
elusive enemies that easily blend into the civilian
population [6]. Securely disseminating mission crit-
ical tactical intelligence to the pertinent people in a
timely manner will be a critical factor in a mission’s
success.

While it is clear that information sharing across
organizational boundaries is becoming a necessity,
it is important for the recipient to ensure that it
receives high quality information from the sender.
However, for a sender to share high quality infor-
mation, the sender needs assurance from the recip-
ient that the shared information will not be mis-
used (e.g.: unregulated or unintended information
disclosure). Poor quality of information and unau-
thorized information disclosure can create the risk
of legal liability, financial loss, tarnished reputation,
or in some environments, a loss of life. Evidently,
there is a risk related tradeoff between the quality of
information and information misuse. Understand-
ing this tradeoff minimally requires us to quantify
the value of information being shared.

Unfortunately, traditional approaches to infor-
mation sharing suffer from two major drawbacks.
First, they use fairly static security labels to tag
information, and thus do not attempt to capture
dynamic attributes of tactical information such as
time sensitivity, accuracy, etc. The value of a piece
of information (henceforth, called an object) is com-
puted as a function of its security labels (henceforth,
called metadata). For example, Multi-Level Secu-
rity (MLS) labels such as unclassified, classified, se-
cret, top secret are used to enforce mandatory ac-
cess control in a military setting; Decentralized La-
bel Management (DLM) labels each object with al-
low and deny lists and regulates information flows
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Figure 1: Metadata Calculus

based on these labels.
Second, traditional approaches to information

sharing use a highly conservative approach to de-
duce the metadata for an output object x derived
from input objects x1, x2, · · · , xn (see Figure 1).
Such approaches does not account for functions that
explicitly downgrade the value of an object. For
example, a set of numeric objects may be statisti-
cally downgraded using their mean; an image may
be downgraded by lowering its resolution, smooth-
ness factor, etc. Consequently, the security labels
in traditional approaches tend to monotonically in-
crease as newer objects are derived from existing
ones. Ultimately, most of the derived objects receive
the highest security label making them inaccessible
to most of the users in the organization. As pointed
out by the JASON committee report [5], traditional
approaches severely constrict the flow of critical in-
formation and are thus not appropriate for dynamic
settings, where systems and processes evolve rapidly
and there are transient needs for sharing tactical,
time-sensitive information across organizational bound-
aries.

In this paper we present a novel metadata cal-
culus for securing information flows. We capture
an object’s metadata using a vector space M and
define a metadata calculus that supports the follow-
ing primitives: (i) a time varying value function Γ
based on an object’s metadata, and (ii) operators
+ and · on the vector space M that can be used
to compute the metadata for an output object that
is derived by downgrading, transforming or fusing
other objects. We also describe a concrete realiza-
tion of our metadata calculus wherein the tightness
of our value estimates competes in an optimization
problem. We present several tradeoffs with space
and accuracy and explore a spectrum of solutions
ranging from conservative to risk-based value esti-
mates.

The rest of this paper is organized as follows.
Section 2 describes related work on risk based se-
cure information flows. Section 3 describes meta-
data types and presents an information theoretic

approach to estimating the value of an object. Sec-
tion 4 describes a calculus for succinctly computing
the metadata for an output object that is derived
from one or more input objects. Finally we conclude
the paper in Section 5.

2 Related Work

There has been significant research on decentralized
information labels and assured information sharing
within and across multiple organizations [2, 3, 4,
10, 11, 12] in recent years. However, these works
primarily focus on the problem of specifying and
manipulating the sharing, propagation and down-
grading constraints on data. These works also as-
sume appropriate security controls that manipulate,
bind and respect these labels are already in place,
for example, via a secure distributed runtime lan-
guage, or some other form of a secure distributed
trusted computing base. Clearly, in practice, for the
settings described in the introduction, one partner
cannot be sure of either the existence, or the proper
usage of, a secure runtime environment of another
partner.

Recently, new approaches based on risk estima-
tion and economic mechanisms have been proposed
for enabling the sharing of information in dynamic
environments [1, 5]. These approaches are based
on the idea that the sender dynamically computes
an estimate of the risk of information disclosure in
providing information to a receiver based on the
secrecy of the information to be divulged and the
sender’s estimate on the trustworthiness of the re-
cipient. The sender then “charges” the receiver for
this estimated risk. The recipient, in turn, can de-
cide which type of information is most useful to him
and pay only to access that. Entities would either
be given a line of risk credit, or adopt a market-
based mechanism to “purchase risk” using a pseudo-
currency. Under the assumption that the line of
risk credit or the risk available for purchase in the
market is limited, an entity will be encouraged to
be frugal with their amassed risk credits and, con-
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sequently, reluctant to spend them unnecessarily.
Since all information flows are “charged” against
expected losses due to unauthorized disclosure and
the amount of risk available is limited, an argument
is made that the total information disclosure risk
incurred by an organization is controlled.

While, as a concept, using risk estimation, charg-
ing for risk of information flows, and limited risk
credits are promising ideas for enabling information
sharing in dynamic environments, the existing work
in this area [1, 5] has gaps in how this concept can
be realized to enable cross-organizational secure in-
formation flows in dynamic environments such as
between organizations or partners in a coalition. In
[1, 5, 8, 7], while risk is estimated based on the ob-
ject metadata [9], the actual formulas or examples
use static credentials (e.g., the security clearance or
category set) of the recipient, rather than a dynamic
value of the object. Indeed, the value of most tac-
tical information tends to decrease with time and
evolve as the object is downgraded, transformed or
fused with other objects. In this paper we present
a novel metadata calculus that can be used to suc-
cinctly estimate the time varying value of tactical
information in a dynamic coalition setting.

3 Metadata Model

In this section we describe our metadata model. For
the sake of simplicity we include one dynamic at-
tribute, namely time, in our metadata model. We
represent the metadata for an object x as a vector
~x in a vector space M. M also supports an unary
operator that maps ~x ∈ M to value function: Γ:
M→(F→F), where F denotes an integer or real
number field. For example, ~x = (10, 2) and Γ~x(t)
= max(10 − 2t, 0) or Γ~x(t) = 10e−2t. The value
operator Γ satisfies the following properties:

0 ≤ Γ~x(t) < ∞,∀t

∂Γ~x(t)

∂t
≤ 0,∀t

x ⊆ y ⇒ Γ~x(t) ≤ Γ~y(t),∀t

Constraining the value of object to non-negative in-
tegers (or real numbers) may be questionable. One
can think of sources of disinformation (misguiding
information) to have a negative value. In this paper
we do not consider pieces of information that are in-
tended to misguide the recipient. In the absence of

disinformation, the value of information is mono-
tonic, that is, if an object x is completely contained
in object y, then Γ~x(t) ≤ Γ~y(t).

The value of an output object x computed as
g(y1, y2, · · · , yn) is computed as shown by an em-
pirical formula in Equation 1, where Yi = {Y1, · · · ,
Yi−1, Yi+1, · · · , Yn} and yi = {y1, · · · , yi−1, yi+1,
· · · , yn}.

Γ~x(t) =
n

∑

i=1

Γ~yi(t) ∗
fYi|X(yi|x, B)

fX|Yi
(x|yi)

(1)

We use fX to denote the probability distribution
function for a random variable X. Value computa-
tion uses the notion of self-information expressed as
I(yi|x) = D(δyi

‖ fYi|X(yi|x)) = − log(fYi|X(yi|x)),
where D(X ‖ Y ) denotes KL-divergence between
probability distributions X and Y and δyi

denotes
the Dirac delta function whose value is one when Yi

= yi and zero otherwise. Intuitively self-information
I(yi|x) denotes the number of additional bits that
need to be learnt in order to reconstruct yi given
that the entity knows the probability distribution
fYi|X . Hence, 2−I(yi|x) = fYi|X(yi|x) denotes the
fraction of information about yi that may be in-
ferred from x. We remark that exact reconstruc-
tion of yi may not be required for certain objects
(e.g.: geographical location). In such cases, one can
replace δyi

by some probability distribution that is
centered around yi.

We argue that Equation 1 satisfies the intuitive
notion of object downgrade, transforms and fusion.
In the rest of this section, we demonstrate the appli-
cability of Equation 1 to a wide range of functions
g(·) ranging from arithmetic functions, database op-
erations and cryptographic functions. Figure 2, 3
and 4 show value computations for some sample
functions g. We use B to denote background in-
formation known to the consumer of object x such
as cryptographic secrets.

In the case of bijective arithmetic functions (such
as x = g(y1) = y1 +1), we note that given x and the
function g, one can completely recover all informa-
tion about y1. Hence, the value of x equals the value
of y1 for all time instances t. On the other hand,
arithmetic functions such as x = y2

1 loose informa-
tion on y1; in particular, given x one can identify
two possible values for y1 (namely, ±√

x). In the
absence of any background information on y1, this
results in an entropy loss of one bit; equivalently
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g B Γ~x note
x = y1 + 1 − Γ~y1(t) g is bijective

x = y2
1 − Γ ~y1(t)

2 g is invertible
x = y2

1 y1 > 0 Γ~y1(t) g is bijective given B

x =
∑n

i=1 yi n, ∀i, yi ∼ fY 0 ≤ Γ~x(t) ≤ ∑n
i=1 Γ~yi(t) Statistical downgrading

Figure 2: Value Computation for Arithmetic Functions

g B Γ~x note
x = y1./y2 − 2k * (Γ~y1(t)+Γ~y2(t)) Join operation
x = y1∪y2 − Γ~y1(t)+Γ~y2(t) Union operation

x = πy1
{y1, y2} − 2−k * Γ

−−−−−→{y1, y2} Project operation

x = σp{y1, y2} − |x|
|{y1,y2}|

* Γ
−−−−−→{y1, y2} Select operation using predicate p

Figure 3: Value Computation for Database Functions: Assume, we have two database fields Y1 and Y2.
The values y1 in Y1 and y2 in Y2 are independent and chosen using a uniform distribution between (0,
2k − 1)

g B Γ~x note
x = K − 0 Key K has zero value;

but knowledge of K affects the value of other objects
x = EK(y1) − 0 Ideal encryption
x = EK(y1) K Γ~y1(t) Ideal encryption

x = DK′(EK(y1)) K ′ 6= K 0 Ideal decryption
x = DK(EK(y1)) K Γ~y1(t) Ideal decryption

x = HK(y1) K 0 Ideal hash
x = SigK(y1) K 0 Ideal signature

Figure 4: Value Computation for Cryptographic Functions
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the value of x is half the value of y1. However, the
recipient were to know that y1 ≥ 0, then there is
no loss of information. Functions such as sum and
average may exhibit different information loss char-
acteristics. For example, let us suppose x = y1 +
y2. If the recipient knows that 0 ≤ y1, y2 ≤ 5, then
given x = 0 (or 10), it can obtain all information
about y1 and y2 respectively.

For database operations, we recognize the need
to differentiate between union and join operations.
Union operates on two sets of the same type; for ex-
ample, let us consider sets of type color y1 = {red}
and y2 = {blue}. Consequently, union of two sets
does not result in any additional information than
the input sets. On the other hand, join operates on
two sets of different types; for example, let us con-
sider a set of type 〈x-coord, id〉 y1 = {〈10, id1〉} and
a set of type 〈y-coord, id〉 y2 = {〈5, id1〉}. A join on
y1 and y2 reveals the (x, y) coordinates of the entity
(id1) and thus has significantly more information
than the input sets. To cite another example, let
us consider a 128-bit cryptographic key K = L ‖ R

of value V , where L and R denote the left and the
right 64-bites of a 128-bit key K. One might argue
that the value of L and R is 2−64 ∗ V , assuming
the key K is randomly chosen over a 128-bit field.
Now, let us consider a join of sets of type 〈L, kid〉
and 〈R, kid〉, where kid denotes key identifier: y1

= {〈L1, kid1〉} and y2 = {〈R1, kid1〉}. It is easy to
see that the value of x must be significantly higher
than the sum of values y1 and y2. Indeed, Equation
1 amplifies the values of y1 and y2 by a factor of 264

when deriving the value of x.
For cryptographic operations, we model ideal

behavior using a 0/1 value relationship with the in-
put object. For example, using an ideal encryption
function x = EK(y1), the value of x is zero if the
recipient does not know K; otherwise, the value of
x is equal to the value of y1, since the recipient
can recover all information about y1 using the cor-
responding decryption function D and the key K.

4 Metadata Calculus

In this section, we describe a metadata calculus
using two binary operators on the metadata vec-
tor space M: vector addition +: M×M→M and
scalar multiplication ·: F×M→M, where F de-
notes a field such as integers or real numbers. These

Figure 5: Conservative Vs Risky ‘+’ Operator

binary operators satisfy the following homomorphic
properties:

• ~x = ~y1 + ~y2 ⇔ Γ~x(t) = Γ~y1(t) + Γ~y2(t) for
all t.

• ~x = a·~y1 ⇔ Γ~x(t) = a ∗ Γ~y1(t) for all t.

In addition, they also satisfy the following intu-
itive properties:

• Commutative: For any ~y1, ~y2 ∈ M, ~y1 + ~y2

= ~y2 + ~y1.

• Associative: For any ~y1, ~y2, ~y3 ∈ M, ~y1 + (~y2

+ ~y3) = (~y1 + ~y2) + ~y3.

• Zero vector ~0: For any ~y1 ∈ M, ~y1 + ~0 = ~y1.

• Distributive over + in M: For any a ∈ F ,
~y1, ~y2 ∈ M, a·(~y1 + ~y2) = a·~y1 + a·~y2.

• Distributive over + in F : For any a, b ∈ F ,
~y1 ∈ M, (a + b)·~y1 = a·~y1 + b·~y1.

• Distributive over · in M: For any a, b ∈ F ,
~y1 ∈ M, a·(b · ~y1) = (ab)·~y1.

• Scalar 1 in F : For any ~y1 ∈ M, 1·~y1 = ~y1.

Based on the properties described above, it is easy
to see that when x is computed as g(y1, y2, · · · , yn)
then the metadata ~x can be computed as shown in
Equation 2. Indeed give the homomorphic proper-
ties on the M, we can show that Equation 2 implies
Equation 1 for all time t.

~x =
n

∑

i=1

fYi|X(yi|x, B)

fX|Yi
(x|yi)

· ~yi (2)
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4.1 Realizing the Metadata Calculus

In this section, we describe a concrete instantiation
of metadata calculus. Unfortunately, there exists
no vector space that satisfies all the required ho-
momorphic properties. In this section, we describe
a metadata vector space and value functions that
satisfy a weaker notion of homomorphism as shown
in Equation 3. It follows from Equation 3 that our
metadata calculus makes conservative estimates on
object values.

~x = a · ~y1 ⇔ Γ~x(t) = a ∗ Γ~y1(t),∀t

~x = ~y1 + ~y2 ⇒ Γ~x(t) ≥ Γ~y1(t) + Γ~y2(t),∀t (3)

We use a metadata space M = Z×Z, where Z de-
notes integer field. Given ~x = (c0, c1), Γ~x(t) =
max(c0 − c1 ∗ t, 0). Given ~x1 = (c1

0, c1
1) and ~x2 =

(c2
0, c2

1), the + and · operators are defined as follows:

a · ~x1 = (a ∗ c1
0, a ∗ c1

1)

~x1 + ~x2 =



c1
0 + c2

0,
c1
0 + c2

0

max
(

c1
0

c1
1

,
c2
0

c2
1

)





Figure 5 illustrates the + operator on ~y1 = (10, 2)
and ~y2 = (20, 10). It is easy to see that Γ~y1(t) +
Γ~y2(t) is:

Γ~y1(t) + Γ~y2(t) =

{

30 − 12t if t ≤ 2

10 − 2t if 2 < t ≤ 5

It is easy to that the above equation cannot be
represented by a straight line and thus cannot be
mapped into a metadata vector in M. Hence, we
choose the least conservative straight line (30 − 6t)
such that Γ~y1(t) + Γ~y2(t) ≤ 30−6t for all t. Indeed,
there are several options to ensure that our value es-
timates are tighter all of which can be modeled as
optimization problems.

• First, we can increase the dimensionality of
the metadata vector space and use a high or-
der polynomial for Γ~x(t). It is easy to see that
proposed metadata calculus can be extended
to all value functions that are polynomial in
time t. We note that increasing the dimen-
sionality of the metadata vector allows us to
compute tighter value estimates at the cost of
higher storage cost.

• Second, we can represent ~x as k tuples where
each tuple describes a straight line within some
time interval. We note that when x is com-
puted as a function of y1, · · · , yn, then the
value of x may be represented by at most n

linear constraints. For any given constant k

≤ n, we can compute a set of k linear con-
straints that tightly bounds the set of n linear
constraints. We note that increasing k allows
us to compute tighter value estimates at the
cost of higher storage cost.

• Third, we could permit bounded violations to
the constraint Γ(−→y1 +−→y2)(t) ≥ Γ~y1(t) + Γ~y2(t)
for some instants t. One can quantify the risk
(r+) in a value estimate using the area en-
closed by the region wherein our value esti-
mate is lower than the true value of the ob-
ject; similarly, one can quantify overestima-
tion (r−) using the area enclosed by the region
wherein our value estimate is higher than the
true value of the object. We formulate two
optimization problems that allow us to trade
off the conservativeness and tightness in our
estimates. First, we can restrict the risk in our
value estimate to at most X% of the value of
the object (averaged over its lifetime). Sec-
ond, we can attempt to minimize a function
of risk and overestimation, say α∗r+−r−, for
some α > 0.

5 Conclusion

In this paper we have presented a novel metadata
calculus for securing information flows in a tacti-
cal setting. The metadata calculus defines a meta-
data vector space that supports a time varying value
function that is computed as a function of the ob-
ject’s metadata and operators + and · to compute
the metadata of an output object that is derived
by downgrading, transforming or fusing other ob-
jects. We have also described a concrete realization
of our metadata calculus using a value function that
is polynomial in time t. We have formulated the
problem of finding tight value estimates as various
optimization problems. These formulations model
various tradeoffs with space and accuracy and ex-
plore a spectrum of solutions ranging from conser-
vative to risk-based value estimates.
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